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Optical propagation through a 
homogeneous turbulent shear flow 

By C. RANDALL TRUMANt AND MOON J. LEEt 

Effects of organized turbulent structures on the propagation of an optical beam in 
a homogeneous shear flow have been studied. A passive-scalar field in a computed 
turbulent shear flow is used to represent index-of-refraction fluctuations, and phase 
errors induced in a coherent optical beam by turbulent fluctuations are computed. 
The organized vortical structures produce a scalar distribution with elongated re- 
gions of intense fluctuations which have an inclination with respect to the mean 
flow similar to that of the characteristic hairpin eddies. It is found that r.m.s. 
phase error is minimized by propagating approximately normal to the inclined vor- 
tical structures. Two-point correlations of vorticity and scalar fluctuation suggest 
that the regions of intense scalar fluctuation are produced primarily by the hairpin 
eddies. 

1. Introduction 
The passage of coherent electromagnetic beams through turbulent flow fields re- 

sults in degradation of optical quality. Distortions in phase by index-of-refraction 
fluctuations reduce beam intensity in the far field. Propagation of wave in atmo- 
spheric situations has been studied extensively (see Tatarskii 1971, Chapter 4). The 
present study, however, is motivated by the need to understand (and predict) losses 
in optical quality induced by thin shear layers through which a beam must pass. 
These include, for example, a mixing layer at the exit cavity of a laser (see Baxter, 
Truman & Masson 1988). 

The physical problem of interest in the present study is a coherent optical beam in 
the visible range, whose width is large compared to the length scales of turbulence 
in the shear layer through which it passes. The beam width is assumed to be the 
same order as the size of the computational flow field, which is about ten times the 
largest length scale of turbulence. The beam wavelength selected was 4 ~ 1 0 - ~  m 
with flow field dimensions on the order of 0.1 m. 

The effect of turbulent fluctuations upon optical quality is commonly modeled 
assuming isotropic, homogeneous turbulence with a Gaussian distribution (e.g. 
Tatarskii 1971, 5547-49). As noted by Liepmann (1979), however, “the theory 
of homogeneous [and isotropic] turbulence does not lead to decisive progress in 
coping with the shear flow and general mixing problems.” Current understanding 
of turbulent shear flow shows the statistical theories, including models of optical 
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degradation (see Sutton 1969), to be inadequate. Thus successful predictions of 
beam degradation must account for instantaneous turbulence structures of both 
the large- and small-scale eddies. 
This work has been undertaken to gain an understanding of the relative impor- 

tance of the large- and small-scale turbulent fluctuations in optical propagation. 
A passive-scalar field in a homogeneous shear flow computed by Rogers, Moin & 
Reynolds (1986) is used to represent an instantaneous index-of-refraction field. It 
is our primary interest to explore the effects of organized turbulence structures in 
turbulent shear flow on the propagation of a coherent optical beam. The basis for 
computing phase error induced by turbulent fluctuations is discussed first. 

2. Wave propagation in a turbulent medium 

2.1. Parabolic wave equation 
Maxwell's equations govern the behavior of an electromagnetic beam propagat- 

ing through a turbulent medium. The magnetic permeability is assumed to be 
constant while the dielectric constant (and thus the refractive index) is assumed to 
be space-variant (Goodman 1985, pp. 393-399), and the effects of depolarization 
are negligible (Monin & Yaglom 1975, Chapter 9). We neglect the time-dependence 
of the refractive index, since the time scale for propagation of light through a flow 
field is much smaller than that of turbulent fluctuations. 

A scalar electric field E ( x , )  may be considered and the transformation E = 
ueiKao yields 

(1) 
aU 

82, 
2iK- + V$u + K 2 ( n 2  - 1). = 0, 

where z, is the distance in the direction of propagation, V: = a2/az: + a2/ay,2 + 
a2/az+2, K is the wavenumber of the coherent optical beam and n(x , )  is the index 
of refraction. The complex function ~(x , ) ,  which represents the amplitude and the 
phme of the electric field, is then slowly varying in the propagation direction. 

In practice, the time-averaged spatial variation in index of refraction is ignored. 
Such variations may displace the beam focus (e.g. beam steering), but induce no 
loss in far-field intensity (Born & Wolf 1975, pp. 462463). Moreover, the effect of 
these variations can be treated by conventional optical techniques. 

Since the effects of turbulent structures are of primary interest, a fluctuating wave 
equation is described. The instantaneous index of refraction is written as 

n = 1 + n', (2) 

where n', typically of order 0(10-'), is understood to be the fluctuation with respect 
to the spatial distribution of index of refraction. 

If backscatter is not important, one may neglect the second derivative with respect 
to t, in (1). Then, after neglecting the term quadratic in n', one obtains the 
parabolized Helmholtz equation: 

I 

au a2u a% 
az, ay: a%: 

2 i K -  + - + - + 2K2n'u = 0.  (3) 
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A pseudospectral method was developed by Clark, Truman & Masson (1988) to 
solve (3) for the phase and amplitude of a coherent optical beam which propagates 
through a turbulent medium with a deterministic index-of-refraction field. 

2.2. Optical path diflerence 
When diffraction of the optical beam is significant, the parabolized Helmholtz 

equation (3) must be solved. For the present study, however, the selected parameters 
ensure that diffraction is negligible, and the restrictions of geometric optics (or 
acoustics) hold (Keller 1954). With the second derivatives representing diffraction 
neglected, the parabolic equation (3) reduces to an ordinary differential equation 
with a variable coefficient n’(x,). Since changes in beam amplitude are negligible 
over a short propagation distance, only changes in phase need to be considered. 

In this case, the phase error can be determined by 

Aq5 = K n’dx,, I’ (4) 

where s is the distance along the propagation path. This integral, known as the 
optical path difference, multiplied by the wavenumber of the beam yields the phase 
error induced by variations in the index of refraction. The use of the optical path 
difference to compute phase errors along arbitrary paths allows the use of the full 
numerical database, which is beneficial in analyzing statistical quantities and asso- 
ciated instantaneous turbulence structures. 

3. Results and discussion 
A flow field in a homogeneous turbulent shear flow computed on a 128 x 128 x 128 

grid by Rogers, Moin & Reynolds (1986) has been analyzed to provide ‘data’ for the 
present study. We have chosen a flow field (C128U12 in Rogers e t  al.’s notation) 
at dimensionless time St  = 12 ( S  is the shear rate), in which most turbulence 
statistical correlations are ‘fully-developed.’ Here, (z, y, z )  denote the coordinates 
in the streamwise, transverse and spanwise directions, respectively. 

3.1. Passive-scalar field 
The instantaneous passive scalar 8 (8, in Rogers e t  al.’s notation) subjected to 

uniform mean velocity and scalar gradients transverse to the mean flow, dU/dy and 
dO/dy, is used to represent the index-of-refraction fluctuations n’; the passive scalar 
is scaled to an r.m.s. value of As discussed in 92.1, the mean scalar gradient is 
neglected, since only phase distortions due to turbulent fluctuations are of interest. 
The phase errors are computed based on the instantaneous index of refraction as 
determined from the passive scalar distribution. 

In order to examine the spatial distribution, contours of the scalar fluctuations 
are shown on a vertical zy-plane in figure 1. It is clearly shown that the scalar 
field consists of regions of intense fluctuation which have an orientation similar to 
the structures of the vorticity field, i.e. the hairpin vortices (Rogers & Moin 1987). 
Notice that regions in which scalar fluctuations are two or even three times as large 
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FIGURE 1. Contours of constant scalar fluctuation 8 on an zy-plane in homogeneous 
turbulent shear flow (Rogers et al. 1986). The scalar field is elongated in the flow 
direction due to applied shear, similar to the vorticity field. 

as the r.m.s. value are inclined at approximately 45" from the gradient direction 
and are elongated along the direction of inclination. This result suggests that the 
large-scale vortical structures strongly influence the scalar distribution. 

3.2. EBect of propagation angle on phase error 

The nonisotropic nature of the scalar distribution immediately leads to a hy- 
pothesis that the phase errors depend on the direction of propagation through the 
turbulent field. In order to verify this hypothesis, phase errors have been computed 
by using (4) for propagation along several directions in the computed flow field. 
[For the present problem, solutions from (3) are almost identical to those from (4).] 
The angle of the beam propagation a is measured counter-clockwise from the flow 
direction (z-axis); for example, propagation in the direction of the mean scalar gra- 
dient (y-axis) has an angle a = 90". Note that propagation at a - 180" and a are 
identical. 

Figures 2(u-d) show contours of the phase error for propagation between the top 
and bottom zz-planes of the computational domain at a = 45", go", 135" and 
153.4", respectively. Data in each case has been scaled to account for the different 
propagation path lengths so that contour increments are the same in each figure. 
The distribution of phase error for propagation at a = 45" (fig. 2u) is highly localized 
and shows the largest phase errors, while the cases at a = 135", 153.4" (figs. 2c, d) 
show distributions somewhat elongated in the flow direction and much less phase 
errors (see also figure 3). 

The (spatial) r.m.s. phase error normalized by the value for the vertical prop- 
agation (a = 90") is plotted in figure 3. In accord with the above qualitative 
indications, the r.m.s. phase error attains a maximum for the propagation along 
the vortical structures (amax N 45" or -135") and a minimum at an angle approx- 

I 
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FIGURE 2(a-c).  For caption see next page. 
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FIGURE 2. Contours of the phase error Ab on the horizontal tz-plane for propa- 
gation through homogeneous shear flow at various angles a: (a) 45"; ( b )  90"; ( c )  
135"; ( d )  153.4'. 

imately normal to them (amin N 150" or -30"). The maximum r.m.s. phase error 
at amax is about twice the minimum value at amin. Consequently, these results 
confirm that the scalar fluctuations are concentrated in regions aligned with the 
vortical structures and are elongated in that direction. 

3.3. Physical model for scalar fluctuations 
The above results indicate that the distribution of scalar fluctuations is directly 

influenced by the vortical structures, namely the numerous hairpin vortices (Rogers 
& Moin 1987). A simple model relating scalar fluctuations to the vortical structures 
is shown in figure 4. The flow induced by an 'upright' hairpin has a region of n' < 0 
between and above its legs, and regions of n' > 0 outside and below its legs. This 
is a direct consequence of the dominant role of the hairpin vortices in inducing the 
scalar fluctuations: 'cold' fluid (n' < 0) is brought up between the hairpin legs, 
while 'hot' fluid (n' > 0) is pulled down outside the legs. Conversely, an 'inverted' 
hairpin has a region of n' > 0 between and below its legs and regions of n' < 0 
outside and above its legs. The importance of this scalar transport by vortical 
structures to the scalar flux was discussed by Rogers e t  al. (1986). 

I 

I 3.4. Two-point correlations 

I The feasibility of the above model for scalar fluctuations induced by vortical 
structures can be tested by examining the two-point cross-correlations of scalar and 
vorticity fluctuations. It is suggested from the conceptual model for generation 
of scalar fluctuation shown in figure 4 that there should be a strong correlation 
between vorticity and scalar fluctuation at a separation in the spanwise direction 
r ,  of about half the average spacing Az of the hairpin legs. 

In figures 5 and 6, the spanwise cross-correlations of vorticity and scalar made 

I 
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FIGURE 3. Dependence of r.m.s. phase error on the angle of beam propagation. The 
r.m.s. values are normalized by the value for the vertical propagation (a = 90"). 
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FIGURE 4. Schematic of a conceptual picture showing the scalar fluctuations in- 
duced by the 'upright' and 'inverted' hairpin vortices. The arrows with solid line 
indicate vorticity and the arrows with broken line describe how the induced flow 
field transports passive scalar. 
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FIGURE 5. Two-point spanwise correlation Q:,e(fz)  of w, and 8, showing a pair of 
peak and valley at distances half the hairpin-leg spacing: lrzl N +Az .  

-.6 -*4 * .- 

-2.5 -2.0 -1.5 -1.0 -.5 0 .5 1.5 1.0 2.0 2.5 
r2 

FIGURE 6. Two-point spanwise correlation Q:,e(rz) of wy and 8, showing a pair of 
peak and valley at distances half the hairpin-leg spacing: It,( N +Az .  
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dimensionless by the respective r.m.8. values w: and 8' are shown: 

(no s u m  on i ) ,  w i ( x )  8(x + r) 
Q:,e(r) = w: 8' ( 5 )  

where the overbar denotes the statistical average taken over the three-dimensional 
space. It is evident that there exists a fair amount of correlation between the scalar 
and vorticity fluctuations. Because the hairpins are oriented (on the average) at 
45" in the ty-plane, both wz and w,, correlate well with 8. For positive spanwise 
separations ( rz  > 0) the correlation is positive Q:ie(r,) > 0, whereas for negative 
spanwise separations ( r ,  < 0) the correlation is negative Qzie(rz) < 0. Notice that 
each leg of the upright as well as inverted hairpins contributes to the correlations 
in the same manner. 

The two-point spanwise correlations Q:,e(r,) and Q:,e(rz) in the figures indeed 
show a pair of distinctive peak and valley antisymmetrically. The distance between 
the peak and valley corresponds to the average spacing between the hairpin legs 
A, N 0.23, estimated from the two-point auto-correlation of vorticity. This is 
entirely consistent with the physical picture of scalar-fluctuation generation sketched 
in figure 4. The correlations computed for a field at an earlier time, St = 8 (not 
shown), are nearly identical. 

4. Conclusions 

The phase distortion induced in a coherent optical beam by turbulent fluctuations 
in a homogeneus shear flow is highly anisotropic, i.e. sensitive to the direction of 
propagation. This is a result of intense scalar (i.e. index-of-refraction) fluctuations 
in elongated regions which are inclined to the mean flow similar to the vortical 
structures (hairpin vortices). A conceptual model is proposed for scalar fluctuations 
produced by the hairpin eddies, which are characteristic of homogeneous shear flow. 
This concept is supported by the two-point vorticity-scalar correlations which show 
a pair of maximum and minimum at spanwise distances which correspond to one- 
half the spacing between the hairpin legs. 

The importance of large-scale vortical structures and the associated scalar dis- 
tribution to optical distortion has been established. It would be of fundamental 
interest to investigate the relative importance of small- and large-scale turbulent 
structures to phase distortion in propagation through turbulent shear flow. A study 
of probability density functions of the phase error and two-point correlations of vor- 
ticity and scalar gradient would also be of interest. An examination of the effects 
of inhomogenity could be carried out by using databases from direct numerical 
simulation of turbulent boundary layers and mixing layers. 

Helpful discussions were held with L. Hesselink, M:%. Rogers and S. K. Lele. 
Support by AFOSR Project 2307Y1, through the .Air Force Weapons Laboratory, 
Albuquerque, New Mexico, is gratefully acknowledged. 
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